الأزهر الشريف قطاع المعاهد الأزهريه منطقة كفر الشيخ الأزهريه

المركز الإعلامي التعليمي - قطاع المعاهد الأزهرية - YouTube

اعداد وتقديم استاذه/ شيماء علي علي عرفه العسلي مراجعه واشراف موجه عام د/ عبد الناصر عبد الله جمعه عبد الهادي

The resultant of coplanar forces meeting at a point

Resultant of a set of coplanar forces act at a point geometrically:

Then the vector \overrightarrow{OH} in the opposite cyclic order represents the resultant of the forces, where:

 $\overline{R} = \overline{F_1} + \overline{F_2} + \overline{F_3} + ... + \overline{F_n}$ and the polygon is called polygon of forces, it is easy to notice that forming a polygon of forces

$$\overrightarrow{R} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} + ... + \overrightarrow{F_n}$$

The resultant of coplanar forces meeting at apoint analytically

If the coplanar forces $\overline{F_1}$, $\overline{F_2}$, $\overline{F_3}$,....., $\overline{F_n}$ act at a point in the coordinate plane system, to make the polar angles θ_1 , θ_2 , θ_3 ,......, θ_n respectively and \overline{i} , \overline{j} are two fundamental unit vectors in directions \overline{OX} , \overline{OY} then: $\overline{R} = \overline{F_1} + \overline{F_2} + \overline{F_3} + \dots + \overline{F_n}$ Resolving each force in the perpendicular directions \overline{OX} , \overline{OY} then:

$$\overrightarrow{R} = (F_1 \cos \theta_1 \overrightarrow{i}, F_1 \cos \theta_1 \overrightarrow{j})$$

$$+ (F_2 \cos \theta_2 \overrightarrow{i}, F_2 \cos \theta_2 \overrightarrow{j})$$

$$+ \dots + (F_n \cos \theta_n \overrightarrow{i}, F_n \sin \theta_n \overrightarrow{j})$$

$$\overrightarrow{R} = (F_1 \cos \theta_1 + F_2 \cos_2 \theta + \dots + F_n \cos \theta_n) \overrightarrow{i}$$

$$+ (F_1 \sin \theta_1 + F_2 \sin_2 \theta + \dots + F_n \sin \theta_n) \overrightarrow{j}$$

$$\overrightarrow{R} = (\sum_{r=1}^{n} F_r \cos \theta_r) \overrightarrow{i} + (\sum_{r=1}^{n} F_r \sin \theta_r) \overrightarrow{j}$$

Complete the following:

- 1 If the forces $\overline{F_1} = 2$ \overline{i} , $\overline{F_2} = \overline{i} 2$ \overline{j} , $\overline{F_3} = 6$ \overline{j} then: the magnitude of the resultant of the forces = ______ and its direction = ______
- 2 If the forces $\overline{F_1} = 2\overline{i} 2\overline{j}$, $\overline{F_2} = 4\overline{i} 8\overline{j}$, $\overline{R} = 2$ a $\overline{i} 3$ b \overline{j} then: a = ______, b = ______

Find the magnitude and the direction of resultant of the forces shown in each of the following figures:

ABCD is a square of side length 12cm, $H \in \overline{BC}$ so $\overline{BH} = 5$ cm. Forces of magnitudes 2, 13, $4\sqrt{2}$ and 9 gm.wt act in directions of \overline{AB} , \overline{AH} , \overline{CA} , \overline{AD} respectively. Find the magnitude of the resultant of these forces.

Creative thinking:

14 The opposite figure: shows four coplanar forces act at the point (O) in the directions shown in the figure, where $\sin \theta = \frac{4}{5}$ and the resultant of these forces equals $8\sqrt{2}$ newton and makes an angle of measure 135° with \overrightarrow{OX} , then find the values of F, K.

